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Abstract

Most of the multivariate statistical techniques rely on the assumption of

multivariate normality. The effects of nonnormality on multivariate tests are

assumed to be negligible when variance-covariance matrices and sample sizes

equal. Therefore, in practice, investigators usually do not attempt to remove

nonnormality.

In this simulation study, the effects of nonnormality on skewed

multivariate data in terms of power were examined by manipulating the factors

such as distribution, sample size, number of variables, and variance-covariance

matrix. The multivariate Box-Cox transformation was applied to remove

nonnormality. The pacer of MANOVA was then calculated after the transformation.

The results were compared with the power calculated before the multivariate Box-

Cox transformation applied. In conclusion, even variance-covariance matrices and

sample sizes were equal, small to moderate increases in power were observed.
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Introduction

Most of the univariate and multivariate statistical techniques assume

additivity, homogeneity of variances, normality, and independence of

observations. In xactice, it is difficult to attain all these assumptions

simultaneously. Therefore, most investigators face the issue of assumption

violations in their research. To counter the issue, Tukey (1977) proposed two

basic solutions to deal with possible violations of the first three assumptions:

(a) to employ a non-linear or linear transformation to data to meet the

assumptions, or (b) to develop a new statistical technique that fits data better.

The first option generally gets higher acceptance in practice because the

second option involves greater investment of time and effort. Therefore,

numerous transformation techniques have been extensively studied and reviewed by

several researchers for univariate cases (eg. , Hoyle, 1973) . Furthermore, the

effects of violations on normality, additivity, and homogeneity of variances were

also investigated (e.g., Box, 1954; Tiku, 1971; Harwell, Rubinstein, Hayes &

Olds, 1992) . Fortunately, the tests developed for univariate linear models are

quite robust to violations of assumptions in most of the cases (Glass, Peckman

& Sanders, 1972) However, the violations of assumptions in multivariate case

have not been studied as extensively as those in univariate case. Mardia (1971)

examined the effects of nonnormality on multivariate regression tests and one-way

WINOVA. He concluded that when variance-covariance matrices and group sample

sizes were equal, the effects of nonnormality on multivariate tests were

considerably negligible. However, Mardia (1971) did not investigate the

robustness of the multivariate general linear models in depth for different

distributional assumptions. Therefore, the effects of nonnormality on the
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multivariate general linear models deserve a further study.

The purpose of this simulation study was to investigate the effectiveness

of the multivariate Box-Cox transformation in normalizing the distribution of

multivariate data and its effect on the power of MANOVA under various sample

sizes, number of variables, variance-covariance structures, and distributional

assumptions.

Theoretical Perspective

Box and Cox (1964) have suggested a family of transformation to normalize

observations, to stabilize variance, and linearize the relationship between

dependent and independent variables in regression. The notable examples of this

family of transformations are (a) square-root transformation to stabilize

variance and to remove non-normality, (b) cube-root transform.tion to remove

nonnormality, and (c) logarithmic transformation to stabilize variance and to

remove nonnormality.

Box and Cox considered a family of transformations for x>01

x
A-1

Y(1) =

1

= logex

if 100

if

to simultaneously satisfy all three assumptions. The coefficient A can be

estimated by using the maximum likelihood method. The maximum likelihood

estimate of A maximizes the likelihood function L(1). FUrthermore, to test

whether maxiiaan likelihood estimate A is statistically equal to 1, that denotes

a normality, the following likelihood ratio test have been proposed:

1 The lox -Cox power transformation technique can also be used for both positive and negative numbers if

Y(1)=(x-C)
is replaced for x". The joint maximum likelihood estimates of C and 1 then will be estimated by

maximizing Likelihood function of ((,1).
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2{Iimx(1)-linax(1)) 5 X' I (a)

where x21(a) denote the upper 100a% point of X2 with 1 degree of freedom. To

avoid the correlation effect between A and 8 where E(y(1))=Y8, X is a vector of

observations of x's and 8 is an unknown parameter, Box and Cox (1982) later

modified the above transformation and proposed to use the following formula:

xA-1

y(X) = ----- if X*0

xci

= Xlogdc if 1=0

where is is a geometric mean of all observations. Box, Hunter and Hunter (1978)

provided an example how to use the Box-Cox transformation for univariate case

with a graphical demonstration. Since it requires an extensive calculations,

Hinkley (1977) and Emerson and Stoto (1982) suggested to estimate A by using

transformation plot for synnetrizing and straightening the relationship between

dependent and independent variables. Hines and Hines (1987) also presented a

chart to calculate A approximately.

Andrews, Gnanadesikan and Warner(1973) and Hernandez and Johnson(1980)

generalized the Box-Cox transformation to multivariate data and its significance

test for A =1 or (11,..,13)=(1,..,1) where p is a number of variables. For each

given A, the transformation can be defined as

xe-1

if .*0

= logexn if Xj:I

where i=1, ,n (re=number of observations) , j=1, ,p (p--number of variables) and
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x.>0 The maximum likelihood estimate of X is calculated by maximizing

L( X) = (-n/2) log El+(Ei.isp( j-1)Ef ,nlogyi )

where E can be replaced by its maximum likelihood estimate. The corresponding

significance test then is

2{Ii,(X)-Iinex(1)) < ep(12) (1)

that is the same as,univariate case except x' distribution has p degrees of

freedom, where p corresponds to the num.er of variables. Rode and Chinchilli

(1988) suggested to use the Newton-Raphson iterative algorithm to obtain the

maximum likelihood estimate of X.

Method

Data were generated from two independent populations with equal variance-

covariance matrices and sample sizes. However, their corresponding group mean

vectors, were assumed to be different by a .5a (medium effect size) (Cohen, 1988)

such that A103-420)=.5a where 1 and 2 denoted group membership and i stood for

a variable i. Type I error rate was set to 0.05 throughout the study. The number

of replications were limited to 500.

The following factors were manipulated:

(a) Three sample sizes were examined, n1=n2=10, 15, 20.

(b) Two sets of variables were employed, p=2 or p=3.

(c) Two variance-covariance matrices were specified:

Case 1. E1 =E2 =E where variables were uncorrelated, pif=0, i.0j,for all i and j.

Case 2. 711=E2=E where variables were correlated such that p4=.60, p13=.55, and

p2=.35.

(d) The following combinations of distributions were specified:

Case 1. When p=2, variable 1 was highly skewed and moderately leptokurtic

6
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(ske:wnes.1.75 and kurtosis-4.00) and variable 2 was moderately skewed and

slightly leptokurtic (skewnes-1.00 and kurtosi1.00) .

Case 2. When variable 1 and variable 2 were specified as in case 1. Variable

3 was highly skewed and highly leptokurtic (skewnes..2.25 and kurtosis =-- 6.50).

Multivariate nonnormal and skewed data were generated by using GENBAW2

(Joreskog and Sorban, 1989) and rIMGINIR (Kirisci, 1992) computer programs. The

maximum likelihood estimates of I were obtained by using a Fortran IV computer

program written by the authors. The maximum likelihood estimate of 1 was

calculated 500 times for each combination. The average value along with its

standard deviation score were presented. Furthermore, the significance level of

the likelihood ratio test statistic for normality (1=1, see equation 1) was

computed and its average significance level was reported. Pcmer and noncentrality

parameter for MANOVA were computed by using SPSSX and their average scores were

presented. Power and noncentrality were calculated by utilizing the following

formulas (Morrison, 1976) :

Pager = 1-13(62) = Pr(FI>Fa;p,(n1+,12-1)-p+1)

where F' is a noncentral F distribution and

Noncentrality parameter = 82= (n1 +n2) (11-p2) 1E-1(p1-/12)

where E
-1

is a inverse matrix of variance-covariance matrix E.

Finally, chi-square probability plots of squared radii, that was proposed

by Andrew, Gnanadesikan and Warner (1971, 1973) , were drawn by AXUM (TriMetrix,

1992) . To draw a chi-square probability plot, Mahalonobis distances (Di) were

calculated and ranked from the smallest to the largest. Theoretical chi-square

scores were obtained for each 100(j-.5)/n percentile from CHIDF (IMSL, 1989) ,

where n was a sample size and j varied between 1 and n. As a final step, points

(Di, 100 (j-.5)/n) ) were plotted in two-dimensional space. The plot suggests
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normality, if all points lie closer to a 45-degree straight line.

Results

In this simulation study, the effects of nonnormality on skewed

multivariate data in terms of power were examined. The factors such as

distribution, sample size, and number of variables were manipulated in order to

decide whether normality assumption was crucial in MANOVA when the number of

observations per variable ranged between m: - ate values. Since the variance-.

oovariEnce matrices and sample sizes were ,,;istzned equal throughout the study, we

anticipated that improvements in power after the transformation Should be

relatively small, if MANOVA is robust to the violation of nonnormality

assumption.

According to the results summarized in Table 1, the multivariate Box-Cox

transformation had a notable effect on the power of the test as well as on the

noncentrality parameter. The smallest increase in power (.09%) was observed when

2 variables were correlated and the sample size was 15 for each group. The

highest increase (26.1%) was attained when 2 variables were uncorrelated and the

sample size was 20 for each group.

Please insert Table 1 here

To place a broader perspective the effects of the multivariate Box-Cox

transformation on the per of MANOVA, it may be useful to examine the maximum

likelihood estimates of A. Correlated and uncorrelated cases should be examined

separately, since the maximum likelihood estimates can be affected if variables

are correlated. When the number of variables was 2 and they were uncorrelated,

the first variable that was specified as highly skewed and moderately leptokurtic

8
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took higher values than those of the second variable that was moderately skewed

and slightly leptokurtic. The maximum likelihood estimates corresponding to the

first variable suggested that, on the average, the maximum likelihood estimate

of A was .16. For the second variable, the values was closer to zero. In

practice, this may suggest that a logarithmic transformation was appropriate for

the second variable that was moderately skewed and slightly leptokurtic. The

results of the likelihood ratio test for normality and their average significance

level indicated that when sample sizes was 10, the transformation for normality

was successful (nonsignificant result) at .05 level. When sample size increased

from 10 to 20, the average significance level dropped to 0.0001. Since )42-test

are very sensitive to number of observations and outliers, this is ususally the

case in goodness-of-fit tests. When the number of variables were 3 and

uncorrelated, the maximum likelihood estimates of A were, on the average, 0.10

for the first. variable, 0.20 for the second variable, and 0.56 for the third

variable that was highly skewed and highly leptokurtic. This suggested that to

remove nonnormality, A in Box-Cox transformation should be set to 0.10 for the

first variable, 0.20 for the second variable and 0.55 for the third variable

(square -root transformation) . The average significance levels followed the same

pattern as before; it dropped from 0.0034 to 0.0000.

When the number of variables were 2 and correlated, the maximum likelihood

estimates of A corresponding to the first variable were closer to 0 that denoted

a logarithmic: transformation . For the second variable, it was closer to 0.30,

a cube-root transformation was appropriate. The significance levels changed from

0.0281 to 0.0004. When the number of variables were 3, the maximum likelihood

estimates of A corresponding to the first variable suggested a square-root

transformation. The second variable was transformed to remove nonnormality

9
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by setting 1=1.17. The third variable required a logarithmic transformation.

The effects of Box-Cox tram formation on multivariate data can be observed

by examining some of the selected chi-square probability plots that were

presented in Figure 1, Figure 2, and Figure 3. As can be noted, if multivariate

normality holds, all the points to be expected lie on the 45-degree straight

line. By considering that, it is possible to visualize the effects of the

multivariate Box-Cox transformation on normality.

Please insert Figure 1, Figure 2 and Figure 3 here

Cbnclusion

In educational research and as well as in behavioral sciences,

investigators heavily rely on multivariate statistical techniques in analyzing

multivariate data with complex structures. Multivariate normality is one of the

key, assumptions that underlies much of the classical multivariate statistical

techniques. Therefore, to meet this ag.cumption gains greater importance in data

analysis.

In this study, our attention focused on the violation of normality

assumption for multivariate data and its effect on power. The multivariate Box-

Cox transformation technique was applied to nonnormal and skewed multivariate

data. Power and noncentrality parameter were calculated for MANOVA in order to

show the effects of the multivariate Box -Cox transformation. Lastly, a chi-

square probability plot of squared radii was employed to transform multivariate

data into unidimensional space to view how successful the multivariate Box-Cox

transformation technique in achieving normality.

Although the multivariate Box-Cox transformation is laborious and time
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consuming, its drawbacks are only a small price to pay for the benefits that can

be obtained from the information we gain. A computerized literature survey of

articles in psychology and behavioral sciences since 1988 using PSYCHINFO,

produced by the American Psychological Association, slims that transformation of

multivariate data for normality has almost never been employed in practice.

Instead, most researchers assume that under the assumptions of equal variance-

covariance matrices and of equal group sar1e sizes, the violation of normality

has a small effect on the power of MANOVA. However, the results of this study

showed that even if two groups had same variance-covariance matrices and equal

sample sizes, small to =tolerate increases in power were observed. Therefore, It

would be highly advisable to apply the multivariate Box-Cox transformation

technique to multivariate data to remove non-normality.
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Figure 1.
ChiSquared Probability Plot of Squared Radii

Unc orretated Variables, df=3, n=40
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Figure 2.
ChiSquared Probability Plot of Squared Radii

Correlated Variables, df=2, n=40
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Figure 3.
ChiSquared Probability Plot of Squared Radii

Correlated Variables, df=3, n=40
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